Corrigendum

Robbins, Blaine. 2012. "A Blessing and a Curse? Political Institutions in the Growth and Decay of Generalized Trust: A Cross-National Panel Analysis, 1980-2009." *PLoS ONE* 7(4): e35120.

In the **Model Specifications** section on pages 4-5, the "random-effects" and "fixed-effects" equations are incorrectly specified. The correct specifications appear here. The author apologizes for these errors.

MODEL SPECIFICATION

In our first set of estimates, we model generalized trust as a function of the political-institutional variables and controls by pooling the time-series of the country sample and using OLS regression (model not shown formally). We then model generalized trust using random- and fixed-effects estimation techniques. The random-effects estimation is modeled as follows:

GeneralizedTrust_{i,t} =
$$\alpha_0 + \beta_1$$
GeneralizedTrust_{i,t-k} + $\beta_2 X_{2,i,t-k} + ... + \beta_z X_{z,i,t-k} + \pi_3 W_{3,i} + ... + \pi_z W_{z,i} + v_i + \varepsilon_{i,t}$

where *i* represents each country and *t* represents each time period (with t = 1-6 waves); GeneralizedTrust_{i,t} is the generalized trust dependent variable for country *i* at period *t*; GeneralizedTrust_{i,t-k} and $X_{z,i,t-k}$ are respectively generalized trust and time-variant predictors for country *i* during period t - k where *k* is the most adjacent period to *t*; $W_{z,i}$ are time-invariant predictors for country *i*; β_z are the coefficients for the time-variant predictors; π_z are the coefficients for the time-invariant predictors; α_0 represents the between-country constant term, v_i is the time-constant error term, and $\varepsilon_{i,t}$ is the idiosyncratic, or time-varying, error term.

Random-effects estimation techniques assume that the variation across entities is random and uncorrelated with predictors in the model. The advantage of random-effects estimation is the ability to include time-invariant regressors such as Scandinavian cultural heritage. But if v_i is correlated with the predictors in the model, then the random-effects estimates are biased and inconsistent. This would suggest the use of fixed-effects estimation, which is modeled as follows:

GeneralizedTrust_{i,t} =
$$\alpha_i$$
 + β_1 GeneralizedTrust_{i,t-k} + $\beta_2 X_{2,i,t-k}$ + ...+ $\beta_z X_{z,i,t-k}$ + $\epsilon_{i,t}$

where i represents each country and t represents each time period (with t = 1-6 waves); GeneralizedTrust_{i,t} is the generalized trust dependent variable for country i at period t; GeneralizedTrust_{i,t-k} and $X_{z,i,t-k}$ are respectively generalized trust and time-variant predictors for country i during period t-k where k is the most adjacent period to t; β_z are the coefficients for the time-variant predictors; α_i represents the country-specific constant term and $\varepsilon_{i,t}$ is the time-varying error term.